
Introduction to git

2

You want to …

• Work with other people on the same project
• Share files with others easily

• Work on the same file as someone else

• Go back in time

3

• Share files via email, Dropbox, USB stick, etc.

• Make multiple copies of files/folders

• Keep commented code in source files

• Make frequent backups

4

• Easily share files with your teammates

• Keep history of modifications
• Can restore older versions of files

• See who did what, when and on which files

• Automatically merge modifications

• Easily access your code online

5

• Offered by third parties
• github.com

• bitbucket.org

• gitlab.gnugen.ch (what we will use today)

• You can also host your own

http://github.com/
http://bitbucket.org/
http://gitlab.gnugen.ch/

6

• Log in using Tequila on gitlab.gnugen.ch

• Create a new project

• Add your teammate(s) to the project

http://gitlab.gnugen.ch/

7

• Install git using your package manager
• On Debian/Ubuntu

sudo apt install git

• On Fedora

sudo dnf install git

8

• Minimal configuration

git config --global user.name 'John Doe'

git config --global user.email 'jd@epfl.ch'

9

• Clone your repository
git clone "https://<you>@gitlab.gnugen.ch/<your project>.git"

• Create a new text file and “add” it
git add <your_file>

• Commit your modifications
git commit -m "some message"

• Push your commit
git push

10

• Downloaded the repository from Gitlab

• Told git to track the new text file

• Created a “snapshot” containing the modifications

• Uploaded our modifications to Gitlab

11

12

• See the state of your local repository

git status

• See the logs of the last commits

git log

• See the unstaged modifications

git diff

13

• Update your local version

git pull

git pull

14

• Create a file named .gitignore in your repository

• Add to it the names of the files and folders to ignore

• You can uses patterns in the file names
• *.out will ignore all files with extension .out

• <dir_name>/** matches all files inside the directory

15

Possible issues:

• Someone did a push before you

• Pull with uncommitted modifications

16

localremote local

git pull --rebase

17

• Throw away all your local modifications

git reset --hard (caution!)

• Keep your local modifications

git stash save (put your modifications aside)

git stash pop (reapply your modifications)

• Commit your modifications, then rebase

18

• Attempting to merge modifications of the same line(s)
of a file will cause a conflict

• Problematic commands

git pull

git stash pop

19

• During a stash pop:
• Resolve conflict

• git stash drop

• During a pull rebase:
• Resolve conflict

• git rebase --continue

Hello World!
<<<<<<< Updated upstream
Lorem Ipsum
=======
Dolor Sit Amet
>>>>>>> Stashed changes

common

remote

local

20

• Undo changes to a file
git checkout <file>

• Remove file from staging
git reset <file>

• Undo a commit
git reset <commit>

• Undo a commit if already pushed
git revert <commit>

21

• Create a new branch

git branch <branch_name>

• Switch to a branch

git checkout <branch_name>

• Merge a branch into the current branch

git merge <branch_name>

22

branch commits merge …

23

• Create a repository in a local directory

git init

git remote add origin <url>

Do some commits

git push –u origin master (-u only the first time)

24

• Interactive staging

git add -i

• Interactive history rewriting

git rebase -i <commit>

• History of checkouts

git reflog

25

• Selectively merge commits from another branch

git cherry-pick <commit>

• Show authors of each line of a file

git blame <file>

• Display diff of a commit

git show <commit>

